

KSMWest ELECTRICITY METERING SOLUTIONS 08.05.2018 KSMWest H1 interface

Overview M-Bus - Physical Layer

The M-Bus consists of

- The master,
- A number of slaves
- A two-wire connecting cable

Master to Slave => The transfer of bits from master to slave is accomplished by means of voltage level shifts.

- A logical "1" (Mark) corresponds to a nominal voltage of +36 V
- A logical "0" (Space) reduces the bus voltage by 12 V to a nominal +24 V

Slave to Master => The transfer of bits from slave to master slave is accomplished by means of modulating the current consumption of the slave.

- A logical "1" (Mark) is represented by a constant current of up to 1.5 mA,
- A logical "0" (Space) is represented by an increased current drain requirement by the slave of additional 11-20 mA.

Overview M-Bus - Data Link Layer

Telegram format - FT 1.2 according to IEC 870-5:

=> The format class FT 1.2 specifies three different telegram formats, which can be recognized by means of special start characters

ean be recognized by means of special start characters	Single Character	Short Frame	Control Frame	Long Frame
	E5h	Start 10h	Start 68h	Start 68h
Single Character		C Field	L Field = 3	L Field
This format consists of a single character, namely the E5h (decimal 229), and serves to acknowledge receipt of transmissions		A Field	L Field = 3	L Field
		Check Sum	Start 68h	Start 68h
Short Frame This format with a fixed length begins with the start character 10h, and		Stop 16h	C Field	C Field
besides the C and A fields includes the check sum (this is made up from the two last mentioned characters), and the stop character 16h.			A Field	A Field
			CI Field	CI Field
Long Frame With the long frame, after the start character 68h, the length field (L field)			Check Sum	User Data
is first transmitted twice, followed by the start character once again. After this, there follow the function field (C field), the address field (A field) and			Stop 16h	(0-252 Byte)
the control information field (CI field). The L field gives the quantity of the				Check Sum
user data inputs plus 3 (for C,A,CI). After the user data inputs, the check sum is transmitted, which is built up over the same area as the length				Stop 16h
tield, and in conclusion the stop character 16h is transmitted.				

Control Frame

The control sentence conforms to the long sentence without user data, with an L field from the contents of 3. The check sum is calculated at this point from the fields C, A and CI.

Overview M-Bus - Data Link Layer

C Field (Control Field)

The control field specifies the direction of data flow, and is responsible for various additional tasks in both the calling and replying directions.

A Field (Address Field)

The address field serves to address the recipient in the calling direction, and to identify the sender of information in the receiving direction. The size of this field is one Byte, and can therefore take values from 0 to 255.

- Address 0: indicates an unconfigured slave
- Address 1-250: can be allocated to the individual slaves
- Address 251-252: reserved
- Address 253: Network Layer addressing used instead of Data Link Layer addressing
- Address 254: broadcast all slaves reply with their own addresses
- Address 255: broadcast none of the slaves reply

CI Field (control information field)

The control information field is already a part of the Application Layer, The control information allows the implementation of a variety of actions in the master or the slaves.

Check Sum

The Check Sum is calculated from the arithmetical sum of the data mentioned above, without taking carry digits into account.

Coding of the Control Field

Bit Number	7	6	5	4	3	2	1	0
Calling Direction	0	1	FCB	FCV	F3	F2	F1	F0
Reply Direction	0	0	ACD	DFC	F3	F2	F1	F0

Control Codes of the M-Bus Protocol (F : FCB-Bit, A : ACD-Bit, D : DFC-Bit)

Name	C Field Binary	C Field Hex.	Telegram	Description
SND_NKE	0100 0000	40	Short Frame	Initialization of Slave
SND_UD	01F1 0011	53/73	Long/Control Frame	Send User Data to Slave
REQ_UD2	01F1 1011	5B/7B	Short Frame	Request for Class 2 Data
REQ_UD1	01F1 1010	5A/7A	Short Frame	Request for Class1 Data (see 8.1: Alarm Protocol)
RSP_UD	00AD 1000	08/18/28/38	Long/Control Frame	Data Transfer from Slave to Master after Request

Overview M-Bus – Transport Layer

The M-Bus transport layer allows several application layers to co-exist over the M-Bus lower layers.

These may be:

- the M-Bus dedicated AL
- the DLMS/COSEM AL
- some other AL that may be specified in the future.

The AL used is selected by the Control Information (CI) field of the M-Bus frame.

CI field values

	Application			
00h-1Fh	DLMS/COSEM M-Bus based TL No M-Bus Data Header is present			
20h-4Fh	reserved for DLMS-based applications			
50h	application reset			
51h	data send (master to slave)			
52h	selection of slaves			
53h	reserved			
54h-58h	reserved for DLMS-based applications			
55h-5Bh	reserved			
5Ch	synchronise action			
60h	DLMS/COSEM M-Bus based TL Long M-Bus Data Header present, direction master to slave			
61h	DLMS/COSEM M-Bus based TL Short M-Bus Data Header present, direction master to slave			
62h-6Fh	reserved			
70h	slave to master: report of application errors			
71h	slave to master: report of alarms			
72h	slave to master: 12 byte header followed by variable format data			
73h-77h	reserved			
78h	slave to master: Variable data format response without header			
79h	reserved			
7Ah	slave to master: 4 byte header followed by Variable data format response			
7Bh	reserved			
7Ch	DLMS/COSEM M-Bus based TL Long M-Bus Data Header present, direction slave to master			
7Dh	DLMS/COSEM M-Bus based TL Short M-Bus Data Header present, direction slave to master			
7Eh-80h	reserved			
81h	Reserved for a future CEN-TC294- Radio relaying and application Layer			
82h	Reserved for a future CENELEC-TC205 network/application Layer			
82h-8Fh	reserved			
90h-97h	manufacturer specific (obsolete)			
A0h-AFh	manufacturer specific			
B0-B7h	manufacturer specific			
B8h	set baudrate to 300 baud			
B9h	set baudrate to 600 baud			
BAh	set baudrate to 1200 baud			
BBh	set baudrate to 2400 baud			
BCh	set baudrate to 4800 baud			
BDh	set baudrate to 9600 baud			
BEh	set baudrate to 19200 baud			
BFh	set baudrate to 38400 baud			
C0h-EEh	-h reserved			

Δ

Honeywell Confidential - © 2017 by Honeywell International Inc. All rights reserved.

DLMS/COSEM M-Bus transport layer

DLMS/COSEM AL based CI values

CITL	Description		
0x00-0x1F	No M-Bus Data Header is present ¹		
0x60	Long M-Bus Data Header present, direction master to slave		
0x61	Short M-Bus Data Header present, direction master to slave		
0x7C	Long M-Bus Data Header present, direction slave to master		
0x7D	Short M-Bus Data Header present, direction slave to master		
¹ In this case, segmentation / reassembly is possible with restrictions.			

CI without M-Bus Data Header

b7	b6	b5	b4	b3	b2	b1	b0
0	0	0	FIN	S	equenc	e numb	er

The values CITL = 0x00...0x1F indicate that no M-Bus Data Header is present. In this case, the TL can provide segmentation and reassembly

- Bit 4 (FIN) indicates that the Data field of the TPDU carries either one part of an xDLMS APDU or the complete APDU.
- Bits 3 to 0 are used for sequence numbering. The rollover of the sequence numbers is permitted, meaning that when the sequence number reaches the value 1111 and there are segments remaining to be sent, the next segment sequence number will take the value 0000.

TPDU with no M-Bus Data Header, Data without segmentation

CI _{TL} = 0x10 STSAP

TPDU with no M-Bus Data Header, Data with segmentation, first segment

CI _{TL} = 0x00	STSAP	DTSAP	Data (xDLMS APDU)
-------------------------	-------	-------	----------------------

TPDU with no M-Bus Data Header, Data with segmentation, one segment

CI _{TL} = 0x010x0F	STSAP	DTSAP	Data (xDLMS APDU)
--------------------------------	-------	-------	----------------------

TPDU with no M-Bus Data Header, Data with segmentation, last segment

	CI _{TL} = 0x100x1F	STSAP	DTSAP	Data (xDLMS APDU)
--	--------------------------------	-------	-------	----------------------

TPDU with short M-Bus Data Header, Data without segmentation

CI _{TL} = 0x61 / 0x7D	ACC STS CFG	STSAP	DTSAP	Data (xDLMS APDU)

TPDU with long M-Bus Data Header, Data without segmentation

Example M-Bus frame

685D5D6853FF100167DB08454C5365700000014D200000541FE2A330AD29E0D68C09365BA286DBF3A7DF14B7790E14D1556AB974B2 7EC5847D11936DB5191DD0F489BA768C2DBB68F6B001E304C21FEA147E0B2E2CA1B91D574DF4F7F582CEBE928316

M-Bus Data link layer	Start Character	0x68	
	Lfield	0x5D	
	Lfield	0x5D	
	Start Character	0x68	
	Cfield	0x53	SND_UD (long frame)
	A field	OxFF	Broadcast Address
DLMS/COSEM M-Bus transport layer	CI field	0x10	TPDU with no M-Bus Data Header, Data without
			segmentation (Data with segmentation, last segment)
	STSAP	0x01	logical Device ID 1
	DTSAP	0x67	Client ID (CIP client id 103)
DLMS/COSEM Application Layer	Cyphering service	DB	General-Glo-Ciphering
	???	0x08	???
	System title	0x454C53657000001	
	length	0x4D	77 bytes of encrypted data
	security control byte	0x20	Bit 30: Security_Suite_Id
			Bit 4: "A" subfield: indicates that authentication is
			applied;
			Bit 5: "E" subfield: indicates that encryption is applied;
			Bit 6: Key_Set subfield: 0 = Unicast,
			1 = Broadcast;
			Bit 7: Indicates the use of compression.
	frame counter	0x0000541F	
	encrypted payload	0xE2A330AD29E0D68C09365BA286DBF3A7DF	1 unencrypted payload:
		4B7790E14D1556AB974B27EC5847D11936DB5	0x0F000055390C07E0090804130D1900FFC4800207090C07E
		191DD0F489BA768C2DBB68F6B001E304C21FE	0090804130D19000008009060100010800FF06000000002
		A147E0B2E2CA1B91D574DF4F7F582CEBE92	020F00161E09060100030800FF06000000002020F001620
M-Bus Data link laver	checksum	0x83	
	End character	0x16	

THE POWER OF CONNECTED

Example M-Bus frame

DLMS/COSEM APDU

general-glo-ciphering 45 4C 53 65 70 00 00 01 system-title: 454c536570000001 ciphered-service: length: 77 security-control-byte security-suite-id: 0 encryption key-set: unicast frame-counter: 144 apdu: E2 A3 30 F9 B7 E0 D6 8C 09 37 5A A1 B1 F8 F3 A7 DF 14 B7 79 0E 14 D1 55 6A B8 75 B1 49 E6 84 7D 11 93 6D B5 19 1D D0 F4 89 BA 76 8C 2D BB 68 F6 B0 01 E3 04 C2 1F EA 14 7E 0B 2E 2C A1 B9 1D 57 4D F4 F7 F5 82 CE BE 92

'ELSep...'

'...0.....7Z.....' '...y...Uj.u.I..}' '..m....v.-.h.' '...........W'

DLMS/COSEM APDU (decrypted payload)

data-notification	
long-invoke-id-and-priority	
invoke-id: 366	
not-self-descriptive	
processing-option: continue on error	
service-class: unconfirmed	
priority: normal	
date-time	
07 E0 09 09 05 11 3A 00 00 FF C4 80	······
2016/09/09 17:58:00	
Day of Week: 5	
Deviation to GMT: -60 minutes	
Clock Status: 80	
notification-body	
data	
structure with 7 elements	
struct-element-0	
octet-string:	
07 E0 09 09 05 11 3A 00 00 00 80	''
struct-element-1	
octet-string:	
01 00 01 08 00 FF	''
struct-element-2	
double-long-unsigned: 0	
struct-element-3	
structure with 2 elements	
struct-element-0	
integer: O	
struct-element-1	
enum: 30	
struct-element-4	
octet-string:	
01 00 03 08 00 FF	''
struct-element-5	
double-long-unsigned: 0	
struct-element-6	
structure with 2 elements	
struct-element-0	
integer: O	
struct-element-1	
enum: 32	
	Honovwoll

THE POWER OF CONNECTED

Companion Standard – H1 interface

The H1 interface is specified as a wired M-Bus interface conform to EN 13757-2 with a fixed baud rate is at 2400 baud.

The physical interface is defined as RJ12 Modular Jack 6P6C connector with the following pinout!!

1 - NC 2 - NC 3 - MBUS1 (+) 4 - MBUS2 (-) 5 - NC 6 - NC

Figure 1: RJ12 connector (Tab Down) front view

The H1 interface is defined as a wired M-Bus master and must support 4 Mbus loads as a minimum (=> total of 6mA on 32V)

This interface allows only one-way communication by pushing data to an attached device. It is not allowed to receiving data via the H1 interface.

In order to support the DLMS data transfer on the wired M-Bus transport layer, please refer to chapter 10.5 in the Green Book [C].

The foreseen communication is one way only i.e. Push from Server to Client. In this case, the data is sent using the broadcast functionality of the M-Bus. The details are available in the following sections of the Green Book [C].

- ⇒ 10.5.3.4.2 MBUS-DATA service primitives Chapter 10.5.3.4.2.1 MBUS-DATA.request and 10.5.3.4.2.3 MBUS-DATA.confirm are applicable as only broadcast needs be supported.
- ⇒ 10.5.3.4.3 MBUS-DATA protocol specification Chapter 10.5.3.4.3.1 Sending COSEM APDUs is applicable as only broadcast needs be supported.
- \Rightarrow 10.5.4 Identification and addressing scheme
 - ⇒ 10.5.4.4 Link Layer Address for M-Bus broadcast The Link Layer Address of LLA = 0xFF is reserved for broadcast.
 - \Rightarrow 10.5.4.5 Transport layer address

The Transport layer addressing is using a CI field in the range of 0x00-0x1F without M-Bus data header. In this case, the transport layer can provide segmentation and reassembly.

⇒ 10.5.4.6 Application addressing extension – M-Bus wrapper The DLMS/COSEM AL needs to identify the partners involved in the AA: each AA is bound to a pair of client and server SAPs.

In this case, the serverSAP = 0x01 (Management Logical Device) and the client SAP = 0x67 (Client L_SAP: 103, CIP Client)

Thank you!

