

Technische Anschlussbedingungen für den Parallelbetrieb einer SNN-Anlage mit dem Verteilernetz der Vorarlberger Netzbetreiber nach TOR Verteilernetzanschluss – Mittelspannung

1. Allgemein

Diese Richtlinie gilt für Anlagenbetreiber von Verbrauchsanlagen im Netz der Vorarlberger Verteilernetzbetreiber (VNB) sobald ein Mittelspannungsanschluss verbunden mit der im Netzzugangsvertrag genannten Notwendigkeit der Ansteuerbarkeit genannt ist. Die Richtlinie ist unter Berücksichtigung der Regelwerke "TOR Verteilernetzanschluss – Mittelspannung", "VDE AR-N 4110:2018-11" sowie den Anforderungen durch die Verordnung "System Operation Guideline", kurz SOGL, formuliert worden. Diese sind in ihrer aktuellen Fassung auf den entsprechenden Homepages abrufbar.

Ziel ist es, die Erfüllung der gesetzlichen Vorgaben und eine kostenoptimierte Anpassung der Netzinfrastruktur an vermehrt volatile Lasten (hohen Leistungsspitzen, schwer prognostizierbarere Gleichzeitigkeit) sicherzustellen. Zudem sollen überlastbedingte Eingriffe/Reduzierungen minimalisiert werden, indem der VNB größere Lasten fernsteuern kann, wenn die Netzstabilität oder die Einhaltung der Leistungsgrenzen dies erfordert (netzgeschwächter Zustand).

 $\sum P_n$ bezieht sich bei der in diesem Dokument beschriebenen Fernsteuerbarkeit auf die Summe der maximalen Nennanschlussleistung je Übergabestelle (damit im Einzelfall auch mehrere Anlagen je Netzanschlusspunkt).

Bei wesentlichen Änderungen am Anschlusspunkt im Sinne der "TOR Verteilnetzanschluss - Mittelspannung" sind die zum Zeitpunkt der jeweiligen wesentlichen Änderung gültigen Regelungen (TOR, Parallellaufbedingungen, Normen) auf die neuen Anlagenteile anzuwenden.

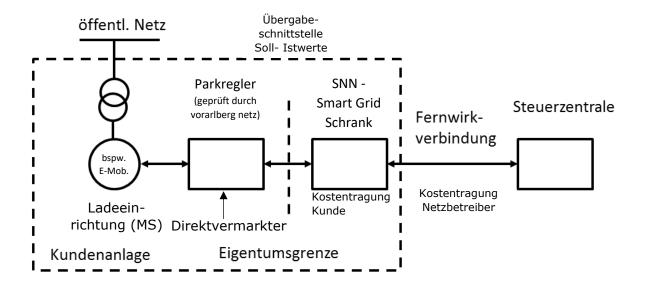


Abbildung 1: Eigentumsgrenzen und Schnittstellen

2. Klassifizierungen und Anforderungen

TOR & SOGL	5 P _n k\/\/	Blindleistungs- regelstrategie	der Wirkleistungs-	Kommunikation (Netzbetreiber SNN-Schrank <-> Parkregler Kunde)	Daten- übertragungs- anforderungen (installiert, relevanten P _{max} Anlagenleistung)	Klemmleiste ¹⁾
NE 5 (MS)	unabhängig	COS(0) = 1	gleitende Wirkleistungsregelung	MODBUS RTU	Echtzeitdaten P_{SNN} , Q_{SNN} , $U_{L1_L2_L3_NAP}$, $I_{1_2_3_NAP}$ sowie Stammdaten	Klemmleiste 4

Tabelle 1: Klassifizierungen und Anforderungen (Vorarlberg ohne kl. Walsertal)

3. Regelung der Kostentragung

Bei Verwendung des SNN Smart Grid-Schrank fallen Fixkosten in Höhe von netto € 15.000, - als Festpreis für den SNN-Schrank, die Inbetriebnahme und Einbindung in das Regelungssystem des Netzbetreibers für die darauffolgenden zehn Jahre an. Nach dieser Zeit wird für die darauffolgenden zehn Jahre, eine dem Stand der Technik entsprechenden Erneuerung in Rechnung gestellt. Die Montage erfolgt dabei durch den Elektriker des Kunden (Abholung nach vorheriger Bestellung im Lager Bregenz).

Die Kosten sind durch den Kunden zu tragen und richten sich gemäß TOR-Verteilernetzanschluss bzw. gemäß Pkt. 6.2.1. TOR-Stromerzeugungsanlagen für Typ B, C und D und Art. 14 bis Art. 16 der Verordnung (EU) 2016/631 zur Festlegung eines Netzkodex mit Netzanschlussbestimmungen für Stromerzeuger.

4. Primärtechnikanforderungen

Sämtliche DC-Schnelllader (Parkregler) sind bei "Energiebezug" (Ladevorgang) für einen cos phi ≥ 0,95 vorzusehen und einen Betriebsspannungsbereich von mindestens Un = 400V ± 10 % und -15% für 5 % der Zeit einer Woche gemäß EN 50160 auszulegen (etwaige Abweichungen werden im Netzzugangsvertrag gesondert aufgeführt).

Im Übrigen gelten insbesondere die Anforderungen gemäß der aktuell geltenden <u>TOR Verteilernetz MS</u> mit dem Netz der VNB.

¹⁾ Ausführungspläne werden im Internet stets aktuell vorgehalten: https://www.vorarlbergnetz.at/elektro-mobilitaet.htm

Sekundärtechnikanforderungen & IKT (Information & Kommunikationstechnik)

Zwischen dem SNN-Smart Grid-Schrank (i.d.R. Privat- Contractingtrafostation) des Anlagenbetreibers und dem VNB wird eine zuverlässige Kommunikationsstrecke auf Kosten (als Teil des oben genannten Fixpreises) des VNB errichtet und online betrieben.

Kundenanlagenseitig (Parkregler) sind die geforderten 10Minuten-Mittelwerte (PSNN, QSNN, U31_NAP, I2_NAP) stetig (Echtzeit) an den SNN Smart Grid-Schrank des VNB mittels MODBUS RTU zu übergeben.

Bei der Fernregelung wie auch bei der lokalen Regelung werden die mit den MS-Spannungswandlern gemessenen Größen U_{MS_Übergabe} und die Spannungskreisüberwachung der Fernwirkanlage (FA) vom Kunden zur Verfügung gestellt.

Netzzutritt und Messung erfolgen per Mittelspannung (Netzebene 5) mittels drei Strom- und Spannungswandlern (induktive) entsprechend den <u>Richtlinien für Übergabestationen</u>.

Für die Fernwirk- und Übertragungseinrichtung des Netzbetreibers ist ein entsprechender Einbauplatz für einen, SNN Smart Grid-Wandschrank ($H \times B \times T = 500 \times 500 \times 300$ mm) nahe der Übergabemessung vorzusehen.

Klimatische Bedingungen um den SNN Smart Grid-Schrank von +10°C bis + 40°C (nicht im Freien) sind einzuhalten. Dem VNB ist eine 230 V Wechselspannungsversorgung zur Verfügung zu stellen. Details entnehmen Sie bitte den nachfolgenden Klemmleistenpläne oder den auf der Homepage ihres VNB abrufbaren Dokumente.

Für die Kommunikationstechnologie (SNN Smart Grid-Schrank -> zentrale Steuereinheit des VNB) ist der Einsatz einer Mobilfunkanbindung vorgesehen (ggf. Außenantenne erforderlich).

Das Anbringen der Mobilfunkantenne inkl. Antennenkabel erfolgt druckwasserdicht durch den Netzkunden.

6. Datenpunktliste

(MODBUS RTU: Parkregler <-> SNN Smart Grid-Schrank)

Tabelle 2: Datenpunktliste MODBUS RTU (die jeweils aktuelle Fassung entnehmen sie bitte der Homepage ihres Netzbetreibers)

Anmerkung: alle Mess- und Sollwerte beziehen sich auf das Verbraucherzählpfeilsystem (- Einspeisung / + Last)

7. Regelung der SNN-Anlage (SNN Smart Grid-Schrank)

Für etwaige abnormale Schaltzustände aufgrund von Revisionen oder Wiederversorgungsgründen wird eine P_{soll} Sollwertvorgabe heute schon umgesetzt, damit für diesen Zeitraum des abnormalen Betriebszustands keine Abschaltungen zu befürchten sind und eine Restleistung gesichert werden kann.

Folgendes Verhalten soll sich bei entsprechenden Komm.zuständen in der SNN-Anlage einstellen:

	Kommunikation SNN-Schrank <-> Parkregler oder (intern) Parkregler/Ladesäule(n)	Sollwertvorgabe SNN Smart Grid-Schrank -> Parkregler (Kunde)
1	Ungestört	P _{soll} auf NAP
2	Gestört ¹⁾	P_{soll} (50% P_{N}) Spannungsbegrenzungsfunktion Referenz mit Q_{set} auf NAP

Tabelle 3: Betriebszustände und -verhalten

Wechsel in Dialog AUSGEFALLEN: wenn Modbus 50 s ausgefallen ist.
Somit ist 60 s nach letzter pos. oder neg. Flanke des Toggle Bit der Parkregler im Status "Dialog Ausgefallen"

Anmerkung: ebenso bei internem Fehler Parkregler / Spannungsausfall Messumformer (bspw. Wegfall Phase) Die Auslösung durch eine NA-Schutzauslösung verhält sich unmittelbar und nach keiner Rampe!

8. SNN-Reaktionszeiten

bei den an die Kundenanlagensteuerung (SNN-Steuerung) gesendeten Befehlen sind diese je nach Vorgabewert P oder Q in folgenden Geschwindigkeiten nach Sollwertübergabe auf den Netzanschlusspunkt (NAP) umzusetzen:

- Wirkleistung P:
 - O Dynamische Einspeisebegrenzung, Batteriespeicher, DC-Schnelllader:
 - PID Regler, nach Wirkleistungssprung muss nach 3s die Abweichung unter 10% der Anfangsabweichung sein
 - o Wirkleistungsvorgabe Netzbetreiber:
 - Rampe mit 2% P_{inst} /s von aktueller Wirkleistung (Toleranzband ± 5% P_{inst})
- Blindleistung Q gemäß Filter erster Ordnung (PT1) und einem Tau von 10s.
 (D.h. nach 10s 63% vom Zielwert, nach 30s 95% vom Zielwert, nach 50s 99% vom Zielwert)

9. Echtzeitdaten (ED)

Vorgesehen ist eine kontinuierliche Übermittlung der ED Psnn, Qsnn, UL1_L2_L3_NAP, I1_2_3_NAP

Dabei sind die Echtzeitdaten laut SOGL eines signifikanten Netznutzers an den VNB und eines nachgelagerten VNB an den vorgelagerten VNB zu übermitteln. Dieser VNB hat die Werte dann an den Übertragungsnetzbetreiber (ÜNB) weiterzuleiten. Fortlaufende Aktualisierung / Änderung: Die ED werden im Abstand von ≤ 60 Sekunden aktualisiert oder bei Schwellwertüberschreitung angestoßen.

¹⁾ gestört: beispielsweise bei Toggle bit-Fehler (Kommunikationsfehler)

Toggle Bit gültig, wenn innert 10 s eine positive und eine negative Flanke empfangen wird.

^{-&}gt; Parkregler regelt P mit 2% von PN pro Sekunde bis auf 0kW.

9.1 Messung bei zusätzlich installierter DEA-Anlage

Bei blindstromkostenpflichtigen SNN-Anlagen mit zusätzlicher Überschusseinspeisung (siehe hierzu weitere Details in ihrem Netzzugangsvertrag / -angebot) wird eine weitere Messeinrichtung erforderlich.

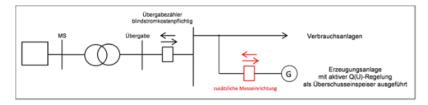


Abbildung 2: SNN-Messkonzept / Zähleranordnung

9.1.1 Übergabemessung (MS)

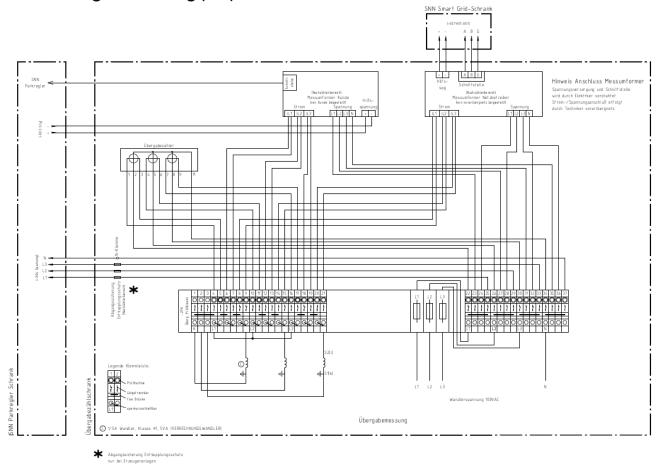


Abbildung 3: Klemmleiste Übergabemessung (MS) Stand: April 2024

Anmerkung: eine hochauflösend, gut lesbare Darstellung finden sie in beigefügtem Link

9.2 Spezifikationen: SNN-Messung

Stromwandler: $1/5A \text{ Klasse} \le 1\% (5VA)$

Spannungswandler: 100VAC (MS) oder 400VAC (NS)

9.3 Klemmleiste 4

Modbus RTU (P & Q)

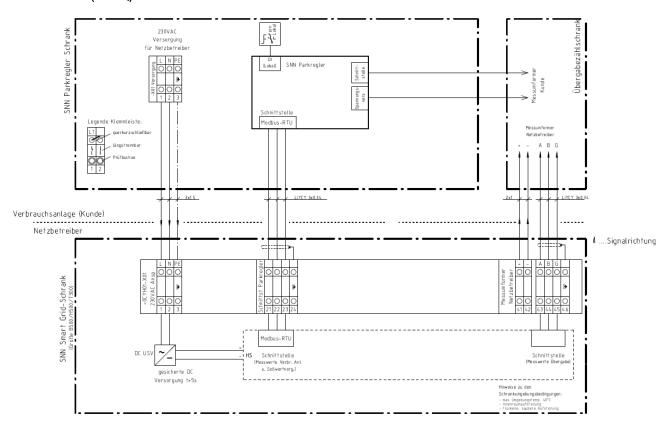


Abbildung 4: Klemmleiste 4 Modbus RTU Variante (P) (Stand: April 2024)

Anmerkung: eine hochauflösend, gut lesbare Darstellung finden sie in beigefügtem Link

Inhalt

1.	Allgemein	1
2.	Klassifizierungen und Anforderungen	2
3.	Regelung der Kostentragung	2
4.	Primärtechnikanforderungen	2
5.	Sekundärtechnikanforderungen & IKT (Information & Kommunikationstechnik)	3
6.	Datenpunktliste (MODBUS RTU: Parkregler <-> SNN Smart Grid-Schrank)	3
7.	Regelung der SNN-Anlage (SNN Smart Grid-Schrank)	4
8.	SNN-Reaktionszeiten	4
9	Echtzeitdaten (ED)	5 5
Abb Abb	bildung 1: Eigentumsgrenzen und Schnittstellen	5 5